Trong suốt chương trình toán phổ thông và đại học, người học toán thường xuyên sử dụng 7 hằng đẳng thức sau, gọi là những hằng đẳng thức đáng nhớ (học sinh được học trong chương trình Toán lớp 8 ở THCS).
1. Bình phương của một tổng
Để tính bình phương của một tổng, chúng ta có công thức:
(a + b)^2 = a^2 + 2ab + b^2
2. Bình phương của một hiệu
Để tính bình phương của một hiệu, chúng ta có công thức:
(a – b)^2 = a^2 – 2ab + b^2
3. Hiệu của hai bình phương
Để tính hiệu của hai bình phương, chúng ta có công thức:

a^2 – b^2 = (a + b)(a – b)
4. Lập phương của một tổng
Để tính lập phương của một tổng, chúng ta có công thức:
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
5. Lập phương của một hiệu
Để tính lập phương của một hiệu, chúng ta có công thức:
(a – b)^3 = a^3 – 3a^2b + 3ab^2 – b^3
6. Tổng của hai lập phương
Để tính tổng của hai lập phương, chúng ta có công thức:
a^3 + b^3 = (a + b)(a^2 – ab + b^2)
7. Hiệu của hai lập phương
Để tính hiệu của hai lập phương, chúng ta có công thức:
a^3 – b^3 = (a – b)(a^2 + ab + b^2)
Ngoài ra, ta có các hằng đẳng th ức hệ quả của 7 hằng đẳng thức trên. Thường sử dụng trong khi biến đổi lượng giác, chứng minh đẳng thức, bất đẳng thức…
8. Tổng hai bình phương
Để tính tổng hai bình phương, chúng ta có công thức:
a^2 + b^2
9. Tổng hai lập phương
Để tính tổng hai lập phương, chúng ta có công thức:
a^3 + b^3
10. Bình phương của tổng 3 số hạng

Để tính bình phương của tổng 3 số hạng, chúng ta có công thức:
(a + b + c)^2
11. Lập phương của tổng 3 số hạng
Để tính lập phương của tổng 3 số hạng, chúng ta có công thức:
(a + b + c)^3
Bài viết này đã giải đáp những câu hỏi của bạn về những hằng đẳng thức đáng nhớ và hệ quả.
Nguồn tham khảo: https://vi.wikipedia.org/wiki/H%E1%BA%B1ng_%C4%91%E1%BA%B3ng_th%E1%BB%A9c